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1 Introduction

One of the most remarkable trends since the Industrial Revolution is the rise in life expectancy.

At the founding of the United States, one in five children did not survive infancy, and life

expectancy at birth was likely just over 40 years (Costa, 2015). Those who survived childhood

fared better but still died at ages that would be considered premature by modern standards.

Life expectancy at age 10 was roughly 55 years. Perhaps surprisingly, this transition did

not begin with the Industrial Revolution. Life expectancy fell during much of the 1800s,

and life expectancy at age 10 in 1900 was only 50 years. It was not until the 1880s, around

the time germ theory gained acceptance among leading scientists, that mortality began to

decline. Over the next hundred years, life expectancy at birth would nearly double, with

most of the increase occurring from 1880 to 1930. But germ theory alone could not have

caused the mortality transition, any more than calculus alone could have put a man on the

moon. Just as steel had to be cut and jet fuel burned, public-health officials and residents

had to reorganize daily life to avoid pathogens.

Despite being one of the most important questions in economic and demographic history,

remarkably little is known about which actions, private or public, caused the mortality transi-

tion. Numerous studies document that specific public-health interventions reduced mortality

from particular causes, prominent examples including clean water and sewer systems for ty-

phoid fever (Anderson et al., 2022; Alsan and Goldin, 2019; Beach et al., 2016; Ferrie and

Troesken, 2008; Troesken, 2004) and vaccination campaigns for smallpox (Troesken, 2019;

Brehm and Saavedra, 2025). However, even the provision of filtered water through munici-

pal waterworks accounts for only a small fraction of the decline in infant mortality, and an

even smaller fraction of the decline in overall mortality (Anderson et al., 2022). While many

mechanisms such as rising incomes, improved nutrition, and sanitation have been proposed,

no well-identified study using modern applied microeconomic methods has yet accounted for

this major societal change.

One explanation is that the mortality transition did not have a single cause, nor even a

handful of causes. Once germ theory established that pathogens spread disease, daily life had
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to be reorganized in numerous ways, from the obvious, such as drinking clean water, properly

disposing of waste, and quarantining, to the more mundane, such as banning public spitting

or regulating the disposal of dead livestock.

Measuring these changes presents several challenges. First, many were likely implemented

simultaneously. Even for a single intervention such as quarantine laws, there may have

been numerous small tweaks, yielding no clear implementation date. This paper embraces

a polycausal explanation of the mortality transition without abandoning hoping for modern

causal identification.

I digitize the universe of state-level public-health laws and regulations enacted between

June 1911 and December 1928 from annual reports published by the United States Public

Health Service (USPHS). These reports catalog laws the USPHS classified as public-health

measures, ranging from funding for waterworks and vaccination mandates to bans on spitting

on trains and regulations on the sale of horsehair brushes. I then merge these data with

monthly all-cause mortality and annual cause-of-death rates from the vital statistics.

Many public-health laws are likely responses to disease outbreaks rather than causes of

mortality declines. To address this endogeneity, I instrument for the passage of public-health

laws using the legislative calendar and session limits, which are set years in advance, often

by state constitutions. Because most public-health laws are enacted during regular sessions,

which are predictable well before any outbreak, states that meet in even years versus odd

years experience mechanically different enactment timing: after one session, the even-year

state will have a new wave of public-health laws that the odd-year state will not adopt until

roughly twelve months later. In addition to baseline two-way fixed-effects and instrumental-

variables estimates, I also implement local projection differences.

Lastly, I use text analysis (both dictionary methods and topic modeling) to describe the

public-health laws enacted during the period and to estimate which types of laws are most

associated with mortality declines. The unsupervised model identifies topics corresponding

to well-studied areas, such as communicable disease and water/sewer systems, as well as

less-studied areas, such as tenements and drug safety.
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I find that a single public-health law reduced mortality on average by 5 to 8% of one

percent (0.0005–0.0008 log points). These estimates are not driven by public-health laws that

repeal prior laws, by non–public-health laws passed contemporaneously, and by Prohibition

or women’s suffrage. Legislatures that were more prolific (i.e., passed more laws during the

period) were also more effective: each public-health law they enacted reduced mortality by

a larger amount. After correcting for multiple-hypothesis testing, drug-safety laws and laws

regarding the collection of vital statistics are most associated with mortality declines. Public-

health laws had the largest effects on influenza, pneumonia, childhood diarrhea, tuberculosis,

and infant mortality. Taken together, these laws can account for almost two-thirds of the

mortality decline during the period.

This paper contributes to several strands of literature. First, it contributes to work ex-

plaining falling mortality rates in the early twentieth century (Preston and Haines, 2014).

Many explanations have been advanced for this trend including water/sewer systems (An-

derson et al., 2022; Alsan and Goldin, 2019; Troesken, 2004), vaccinations (Troesken, 2019),

income/nutrition (Floud et al., 2011), and health-care infrastructure (Hollingsworth et al.,

2024). However, any intervention considered in isolation, while perhaps highly effective

for certain diseases, leaves most of the mortality decline unexplained. Second, this paper

contributes to the literature on the effectiveness of nonpharmaceutical interventions and

the 1918 influenza pandemic (Beach et al., 2022; Hatchett et al., 2007). I find that in-

fluenza/pneumonia was an area in which public-health laws were particularly effective, and

my sample includes the 1918 influenza wave and all subsequent waves, whereas most prior

research focuses only on the fall 1918 wave. Third, I contribute to the literature on the role

of laws and institutions in the transition to a modern economy (Acemoglu et al., 2001, 2005;

Acemoglu and Johnson, 2007; Matsuura, 2015). I find that any single law has a trivial effect

on mortality, even when statistically significant. Thus, what was needed was not a single law

but a system of laws, or an institution of public health.
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2 Data

The law data come from an annual report published by the U.S. Public Health Service between

June 1911 and December 1928, titled State Laws and Regulations Pertaining to Public Health.

Each report lists all state-level public health laws passed that year, covering topics ranging

from mandatory quarantines to the disposal of dead livestock. Appendix Figure A.1 provides

examples of two such laws. During this period, 5,867 state-level public health laws were

enacted. I digitize the titles and dates of each law by hand and obtain the full text through

optical character recognition (OCR).1

Kimball (1922) reports data on the frequency of regularly scheduled legislative sessions,

limits on session length, and legislator salaries. State legislatures met annually, biennially, or

quadrennially. Some states limited sessions to 50 days or fewer, while others imposed longer

limits or no limit at all. I top-code states without session limits at 180 days, as there is a

sharp decline in the passage of public health laws roughly six months after the start of regular

sessions. Legislators were paid either on a fixed basis (e.g., annually) or per day in session.

To normalize wages, I calculate “potential salary” as either the annual salary (if legislators

were paid annually) or the salary a legislator would have earned had the session reached its

limit without special sessions.

By combining the frequency of legislative sessions with the last date of a regular session

before the sample begins (pre-1911 sessions), I estimate how many months a legislature would

have been expected to meet since June 1911.2 I code all states as starting with zero cumulative

sessions. In the month when the legislature is expected to meet, cumulative sessions increase

by one. In the following month, cumulative sessions increase again if the session length is

at least 30 days, and in the next month only if the session length is at least 60 days, and

so forth. For sessions without a limit, this process continues until the cumulative number

1To obtain the OCR text for law n, I identify the page on which law n begins (pn) and the page of law
n + 1 (pn+1). The text of law n must lie within the interval [pn, pn+1], but may also contain material from
laws n − 1 and n + 1. I start by searching for the title of law n and truncate any text preceding it. I then
search for the title of law n + 1 and truncate any text after it, including the title itself. I am able to locate
both titles 79% of the time.

2The historical legislative sessions are from Babbitt (1912).
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of expected sessions increases by six (since session length is top-coded at 180 days). This

methodology allows me to generate the expected number of months a state legislature is

in session using data available from before the sample period, ensuring that it cannot be

endogenous to mortality shocks such as the 1918 influenza pandemic.

I begin by generating cumulative counts of the number of laws passed in state s by month

t since June 1911. Formally, let the number of public health laws passed in state s in month

t be Lawss,t. Then the cumulative number of laws is cLawss,t =
∑t

τ=t0
Lawss,τ .

The mortality rate comes from the annual report of vital statistics. I construct it by

dividing monthly death counts by population estimates obtained through linear interpolation

between the 1910, 1920, and 1930 censuses. Mortality statistics become available for a state

only once it enters the “registration area,” meaning that the Bureau of the Census deems the

data sufficiently reliable. For this reason, the panel is unbalanced; however, cumulative laws

are always measured starting in June 1911. Cause-of-death data are sparse at the monthly

level. I therefore supplement the analysis with annual mortality data, using a simple average

of the cumulative monthly law counts in that year.

I use two natural language processing techniques to analyze the text of the laws. First,

I apply simple dictionary methods, searching the full text for substrings that identify laws

containing either a clear punishment or a repeal of a prior law. To identify punishments, I

search for the substrings “fine,” “jail,” “prison,” or “punish.” I classify a law as repealing an

existing law if it contains the substrings “repeal,” “rescind,” or “nullif.” Second, I use Latent

Dirichlet Allocation (LDA), an unsupervised machine learning method, to assign each law to

topics. I discuss LDA in detail in Section 5.

Summary statistics are presented in Table 1. The mean monthly mortality rate is 105

deaths per 100,000. In the average month, a state passes 0.7 public health laws, but the

distribution is skewed, with many laws enacted during legislative sessions (up to 41 in a

single month). The cumulative number of laws passed in a state-month cell is 73, of which 15

are repeals of existing laws and 25 contain an explicit punishment. The average state-month

cell includes over 100,000 words of public health laws passed by the legislature. Since the
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Table 1: Summary statistics

Mean S.D. Min Max N

Monthly mortality rate 105.5 30.2 46.9 636.5 6,850
Laws passed that month 0.7 2.3 0.0 41.0 6,850
Word count 965.0 3745.6 0.0 71919.0 6,850
Repeal laws 0.1 0.7 0.0 13.0 6,850
Laws with punishments 0.2 0.9 0.0 16.0 6,850
Cumulative laws 73.1 62.1 0.0 422.0 6,850
Cumulative word count 104.9 90.8 0.0 636.1 6,850
Cumulative repeal laws 14.6 13.9 0.0 70.0 6,850
Cumulative laws with punishments 24.6 19.5 0.0 113.0 6,850
Year 1920.8 4.9 1911.0 1928.0 6,850
Month 6.6 3.4 1.0 12.0 6,850
Salary 3.8 3.2 0.5 15.0 6,850
Session length 111.8 57.6 40.0 180.0 6,850
In session 0.2 0.4 0.0 1.0 6,850
Cumulative months in sessions 22.8 19.0 0.0 102.0 6,850

Notes: Each observation is a state-month cell. Mortality data come from the Vital Statistics. Public health
laws are restricted to laws passed between June 1911 and December 1928. Salary is annual salary measured
in hundreds of 1919 dollars. Session length is the maximum length of regular sessions, top coded at 180 for
states with no limit, and is measured in days.

beginning of the sample, state legislators were expected to have been in regular session for an

average of 22 months. Annual salaries for state legislators averaged $350 (in 1919 dollars),

and session lengths averaged 111 days.

3 Methodology

Estimating the effects of public health laws poses several challenges. First, the cumulative

number of laws is nearly continuous, taking on 285 distinct values. Second, the number of

laws changes frequently within a state: the median state-month passes 14 laws over the prior

24 months, the 95th percentile passes 42, and the 5th percentile passes 3. Third, the effects

of public health laws may be dynamic, with new laws enacted before the effects of earlier

laws stabilize. Fourth, public health laws are likely endogenous, as lawmakers may respond

to public health crises such as the 1918 influenza pandemic or outbreaks of smallpox or polio.

To address these challenges, I consider three identification strategies, each involving trade-offs
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between statistical power and the strength of assumptions.

3.1 Baseline: Two-Way Fixed Effects

As a baseline, I estimate a two-way fixed effects (TWFE) specification:

ln(mst) = αt + βs + δ cLawsst + ϵst, (1)

where mst is the monthly mortality rate in state s at time t, αt and βs are time and state

fixed effects, respectively, and cLawsst is either the cumulative number of public health laws

or the cumulative number of laws within a given topic.

The two-way fixed effects model has the advantage of being well powered and controls for

factors that are relatively fixed at the state level, such as climate, endemic disease environ-

ments, and population density. Time fixed effects account for trends in general knowledge

about germ theory, medical innovations, and national events such as the 1918 influenza pan-

demic, World War I, or recessions. Because instruments are not required, I can also estimate

variants of the two-way fixed effects model that replace the cumulative number of laws with

the number of laws in a given topic or restrict the sample to laws with specific text features.

The baseline model also has several weaknesses. Most notably, cumulative public health

laws are likely endogenous to public health shocks. A prominent example is health boards

passing regulations during the 1918 influenza pandemic, though responses to outbreaks of

other diseases—especially smallpox—were also common. The laws are heterogeneous in na-

ture, implying that the two-way fixed effects estimator may be biased (Goodman-Bacon, 2021;

De Chaisemartin and D’haultfœuille, 2023; Callaway and Sant’Anna, 2021). Lastly, the base-

line model assumes that the effects of public health laws are static: they are implemented

without delay and their effectiveness is constant over time. To address these limitations,

beginning with endogeneity, I consider two additional estimation strategies.
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3.2 Instrumental variables strategy

Public health laws and regulations arose in three ways. First, a health board could issue a

regulation under the powers granted by the state legislature. These regulations are the most

likely to be endogenous, as they were often enacted in response to disease outbreaks. Second,

state legislatures could pass laws during extraordinary sessions, generally convened by the

governor and often prompted by new information. Lastly, state legislatures met at regular

intervals defined in their state constitutions. Most commonly, they convened in January,

with sessions lasting several months subject to constitutional limits. Some legislatures held

regular sessions in odd years, others only in even years, while some met annually; one state

(Alabama) met quadrennially.

Most public health laws were passed during regular sessions. Figure 1 illustrates the

number of laws passed by year for states with different legislative schedules. States that

met annually (top left panel) passed a steady stream of laws, with no clear pattern favoring

odd or even years. States that met biennially beginning in 1913 passed most of their laws

in odd years. Some new laws were still enacted in even years—presumably through health

board regulations or special sessions—but at a much lower rate. A similar pattern favoring

even years appears for states that began meeting biennially in even years starting in 1912.

Alabama, with a quadrennial schedule, shows a sharp wave of laws passed every fourth year.

States with longer session limits also passed more laws. Figure 2 shows the number of

laws passed by month for states that convened in January during years with scheduled regular

sessions. Few laws were enacted in January, suggesting that legislatures convened closer to

the end of the month or that public health laws were not the first legislative priority. States

meeting for 40–60 days passed relatively few laws, with legislative activity peaking in March.

States with limits of 70 to 150 days reached a higher peak and continued passing laws through

at least May, whereas states without limits passed the most laws overall and continued doing

so until July. The final panel shows the same states during years without a scheduled regular

session. In those years, there is no January peak, confirming that these patterns are not

driven by seasonality in health board regulatory activity.
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Figure 1: Laws passed by session schedule
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Figure 2: Laws passed by month and session limit

Notes: Includes states with sessions starting January.

11



These empirical regularities motivate an instrumental variables strategy. Specifically, I

instrument for the cumulative number of public health laws using the cumulative number of

months the legislature has been in regular session. I also interact this instrument with the

annual salary of state legislators. Because regular sessions are predictable—often decades in

advance—without any knowledge of future mortality shocks, the instruments are likely to

satisfy the exclusion restriction. Moreover, the fact that legislative schedules clearly predict

the passage of public health laws ensures that the IV relevance condition holds.

I estimate the following first-stage regression:

Lawsst = γs + λt + π1 SessionMonthsst + π2 (SessionMonthsst × Salarys) + νst, (2)

where SessionMonthsst is the cumulative number of months that the legislature in state s has

been in regular session from the beginning of the sample to time t, and Salarys is the annual

salary of legislators in state s.3

The IV estimator is not without its trade-offs. IV estimates result in a loss of power

relative to the two-way fixed effects estimator. In addition, treatment effects are still assumed

to be static rather than varying over event time. I relax this latter assumption with the final

estimator.

3.3 Event Study Estimation

The challenge of estimating an event-study design in this context is that treatment is con-

tinuous and changes from period to period. Most modern difference-in-differences methods

consider the binary, single-treatment case, and generalizations typically extend to either

continuous treatment or time-varying treatment, but not both. One exception is the local

projection difference-in-differences (LP-DiD) approach developed by Dube et al. (2023).

To implement such an event study, I assume that the effects of previously passed laws

stabilize after a certain number of months. This allows dynamic treatment effects around the

3The variable SessionMonthsst assumes that regular sessions meet for their constitutional limit, and that
legislatures without limits meet for 180 days. The early conclusion of a session could reflect a response to a
disease outbreak.
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passage of a law. The treatment effect for each event time can then be estimated by restricting

the sample to two groups. The treatment group includes observations in which no laws were

passed in the months leading up to a new law (so that prior effects have stabilized) and no

additional laws are passed until the effects of the new law have stabilized. The control group

consists of “clean controls,” defined as observations in which no laws were passed during the

event-window horizon (either before or after). Because very few states go more than a year

and a half without passing public health laws, I require that treatment effects stabilize after

five months.

Formally, for each event time h, I estimate:

ln(ms,t+h)− ln(ms,t) = βh∆Lawss,t + δht

+γh1 ln(ms,t−1) + γh2 ln(ms,t−2) + ehst,

using the set of observations for which both Lawss,t = Lawss,t+h and Lawss,t−1 = Lawss,t−5

(the treatment group), or Lawss,t+h = Lawss,t−5 (the “clean” controls). This method per-

mits heterogeneous treatment effects and allows for five months of dynamic effects before

stabilization.

For all three methods, I cluster standard errors at the state level. I also conduct several

robustness checks, such as controlling for the occupational, racial, and age distributions of

states (interpolated linearly between census years), including region-specific linear trends,

restricting the sample to laws that are not repeals, and controlling for other types of laws.

4 Results

The main results appear in Table 2. The two-way fixed effects estimates in Panel A suggest

that each law passed reduces mortality by between 0.03% and 0.06% (three to six percent

of one percent). Although each individual law has only a trivial effect on mortality, the

cumulative impact of hundreds of such laws (as many states enacted during this period)

amounts to a meaningful reduction. The baseline result in column 1 is robust to restricting
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to a balanced panel of states (column 2), controlling for lagged mortality (column 3), and

omitting population weights for each month-state cell (column 4).

Instrumenting for public health laws with the legislative schedule increases the magni-

tude of the estimates (Panel B). In this case, a single law reduces mortality by between 0.05%

and 0.07% (five to seven percent of one percent). The larger estimates are consistent with

legislatures passing public health laws in response to infectious disease outbreaks. In such

cases, mortality may rise when laws are enacted, but the causal chain runs in reverse, moti-

vating the use of a valid IV approach. The first stage (Panel C) shows that the cumulative

number of months a legislature is in session predicts more public health laws. Although the

stand-alone coefficient is statistically significant in only one specification, the interaction of

legislative months with legislative salary is positive and significant across all specifications.

For example, in the baseline specification, legislatures with an annual salary of $1,000 passed

approximately 0.68 public health laws per month, while increasing salary by an additional

$1,000 raised the rate to 0.85 per month. The F-statistics on the instruments range from 71

to 361.4

The results are driven by public health laws that did not repeal existing statutes. Table 3

presents results based on a classification of laws using dictionary methods. Column 1 reports

results excluding repeal tokens from the law text. The effect size increases relative to the OLS

estimates, reaching approximately seven percent of one percent. Column 2 reports the speci-

fication restricted to repeal laws, which yields a negative and significant coefficient; however,

this result appears to be driven by the fact that repeals tend to occur while legislatures are in

session and passing other public health laws. Column 3 includes both non-repeal and repeal

laws. The effect of non-repeal laws is significant and twenty-four times larger in magnitude

than that of repeal laws. The finding that repeals do not increase mortality is consistent

with legislatures repealing laws after outbreaks have subsided. For example, if smallpox had

already disappeared from a state, repealing a vaccination mandate would be unlikely to affect

mortality. Column 4 considers laws containing punishment tokens. The estimated effects are

4Using only the cumulative number of sessions as an IV produces similar estimates.
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Table 2: OLS estimates of the effect of public health laws

(1) (2) (3) (4)

Panel A: OLS
Cumulative laws -0.000568∗∗∗ -0.000535∗∗∗ -0.000313∗∗∗ -0.000535∗∗

(0.0000917) (0.000107) (0.0000495) (0.000215)

Panel B: Second stage
Cumulative laws -0.000713∗∗∗ -0.000721∗∗∗ -0.000746∗∗∗ -0.000535∗∗

(0.000121) (0.000149) (0.000180) (0.000215)

Panel C: First stage
Cumulative months in sessions 0.501 0.882** 0.493 0.026

(0.488) (0.422) (0.491) (0.564)
Cumulative sessions × salary 0.176*** 0.154*** 0.177*** 0.222***

(0.026) (0.021) (0.026) (0.041)
F-stat of IVs 361.41 232.69 419.78 71.71
N 6,850 4,642 6,805 6,850

Balanced N Y N N
Lagged mortality N N Y N
Weighted Y Y Y N

Notes: Statistical significance: ∗p < 0.1, ∗ ∗ p < 0.05, p ∗ ∗∗ < 0.01.
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Table 3: Effects of laws classified by dictionary methods

(1) (2) (3) (4)

Cumulative non-repeal laws -0.000668∗∗∗ -0.000664∗∗∗

(0.000101) (0.000133)
Cumulative repeal laws -0.00183∗ -0.0000271

(0.000912) (0.000707)
Cumulative laws with punishments -0.000842

(0.000922)

Notes: Statistical significance: ∗p < 0.1, ∗ ∗ p < 0.05, p ∗ ∗∗ < 0.01.

Table 4: Measuring laws by word count

(1) (2)

Cumulative word count -0.000347∗∗∗ 0.0000374
(0.0000873) (0.000186)

Prolificness × word count -0.000491∗∗

(0.000195)

Notes: Statistical significance: ∗p < 0.1, ∗ ∗ p < 0.05, p ∗ ∗∗ < 0.01.

similar in size but statistically insignificant.

An alternative to counting laws is to count the number of words in enacted laws. This

measure accounts for the possibility that some states combine provisions that would constitute

several separate laws elsewhere into a single statute. Table 4 replaces the cumulative number

of laws with the cumulative number of words in those laws (measured in thousands). An

additional 1,000 words of public-health legislation is associated with a decline in mortality of

approximately 0.035%.

More prolific legislatures were also more effective. I measure prolificness as the total

number of laws passed over the sample period, rescaled to the unit interval:

Prolificnesss =
cLawss,Dec 1928 −mins′

(
cLawss′,Dec 1928

)
maxs′

(
cLawss′,Dec 1928

)
−mins′

(
cLawss′,Dec 1928

) . (3)

The interaction of prolificness with cumulative word count is negative, indicating that for

the most prolific legislatures (Prolificness = 1) an additional 1,000 words of public-health

legislation corresponds to a 0.05% decline in all-cause mortality, whereas for the least prolific

(Prolificness = 0) the effect is approximately zero. Most legislatures are still effective: the
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estimated effect turns negative once prolificness reaches 0.08 on the 0–1 scale.

A potential confounder is the passage of laws unrelated to public health that were enacted

around the same time. Such laws could affect educational attainment or income and thereby

indirectly reduce mortality. As a proxy for total legislative activity, I collect the number of

pages of laws passed in each regular legislative session. Because my measure of public health

laws is based on the number of laws rather than pages, I standardize both variables to have

mean zero and standard deviation one. In addition, I control for the presence of women’s

suffrage and alcohol prohibition, both of which have been shown to reduce mortality. The

results are presented in Table 5. The OLS estimates suggest that a one standard deviation

increase in public health laws reduced mortality by approximately three percent. The coef-

ficients are similar across all four specifications; however, once other laws, women’s suffrage,

and prohibition are added, the results are no longer statistically significant. The instrumental

variables estimates in Panel B suggest that a one standard deviation increase in public health

laws decreased mortality by between four and six percent, with all specifications statistically

significant at conventional levels. Consistent with the literature, the estimates for women’s

suffrage and prohibition indicate that both policies reduced mortality, while other general

laws did not.

The event-study results appear in Figure 3. Mortality declines following the passage of a

public health law, reaching a peak effect of approximately −0.004 log points. Six event-study

coefficients are statistically significant, and subsequent estimates remain negative. There is

a small, statistically insignificant uptick in mortality two months before a law is passed, sug-

gesting that some laws may have been responses to disease outbreaks. Appendix Figure A.2

reports the event-study results after excluding laws that contain terms suggestive of delayed

implementation (e.g., variants of effective on). As most laws do not contain such language,

the resulting trajectory is similar.
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Table 5: Controlling for other laws

(1) (2) (3) (4)

Panel A: Ordinary Least Squares
Standardize public health laws -0.0345∗∗∗ -0.0279∗ -0.0332∗∗∗ -0.0251

(0.00564) (0.0160) (0.00482) (0.0165)
Standardize all law pages -0.00771 -0.00929

(0.0140) (0.0148)
Women’s suffrage -0.0597∗∗∗ -0.0590∗∗∗

(0.0169) (0.0171)
Prohibition -0.0264∗∗ -0.0302∗∗

(0.0123) (0.0124)

Panel B: Instrumental Variables
Standardize public health laws -0.0429∗∗∗ -0.0641∗∗∗ -0.0420∗∗∗ -0.0656∗∗∗

(0.00749) (0.0181) (0.00687) (0.0175)
Standardize all law pages 0.0196 0.0213∗

(0.0130) (0.0120)
Women’s suffrage -0.0600∗∗∗ -0.0618∗∗∗

(0.0161) (0.0168)
Prohibition -0.0222∗ -0.0113

(0.0134) (0.0162)
N 556 556 556 556

Notes: Statistical significance: ∗p < 0.1, ∗ ∗ p < 0.05, p ∗ ∗∗ < 0.01.
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Figure 3: Local Projection Difference-in-Differences Estimates

Notes:

19



5 Topic Modeling

The previous section provides evidence that public health laws reduced mortality but offers

little insight into which types of laws were most effective. A cursory reading of Fowler’s

reports reveals a diverse set of laws ranging from the invasive (e.g., involuntary quarantines)

to the expensive (e.g., municipal waterworks financing) to the relatively mundane (e.g., bans

on public spitting). It seems unlikely that such a varied set of laws would have had equally

strong effects on mortality.

To categorize the laws systematically, I use Latent Dirichlet Allocation (LDA), an un-

supervised machine-learning technique from computational linguistics (Blei et al., 2003).56

LDA is a mixture model in which each document (law) is represented as a distribution over K

topics, and each topic is a distribution over words. The number of topics K is chosen by the

researcher. A larger K yields more granular topics, some of which may overlap conceptually,

while a smaller K yields broader categories. The purpose of LDA is to classify the laws in a

manner useful for the research question at hand; there is no single correct value of K suitable

for all applications.

LDA estimates parameters for the following data-generating process. For each topic

k ∈ {1, . . . ,K}, draw a topic–word distribution βk ∼ Dir(η). For each document d ∈

{1, 2, . . . , D}, draw topic proportions θd ∼ Dir(α), where θd is a K-dimensional probabil-

ity vector with elements that sum to one. Let Nd denote the number of words in document

d. For each word position n ∈ {1, . . . , Nd}, draw a topic assignment zdn ∼ Multinomial(θd)

and then draw a word wdn ∼ Multinomial(βzdn). Under the bag-of-words assumption (word

order is ignored), the vector of word counts in document d is multinomial. LDA yields two

objects of interest: θ̂d (the estimated topic mixture for document d) and β̂k (the estimated

5LDA has several advantages over using a large language model (LLM) such as ChatGPT or Claude to
classify the data. The LDA algorithm is transparent, open-source, and therefore replicable, whereas frontier
LLMs rely on proprietary systems. Their training data—and in some cases the models themselves—are
continually updated and fine-tuned, and their behavior across settings is not fully understood. Hallucinations
are well documented, and LLMs can introduce subtle errors that are difficult to detect.

6Examples of papers using LDA in economics and the social sciences include Polyzos and Wang (2022) on
social-media posts related to energy markets, Edison and Carcel (2021) on FOMC transcripts, and Saavedra
(2025) on coverage of women’s suffrage.
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word–topic distribution for topic k).

Before estimation, I apply the following preprocessing steps. First, I remove stop words

that typically carry little meaning (e.g., at, the, or of ). Second, in the bag of n-grams

representation, I include both unigrams and bigrams. Third, I remove words that appear

fewer than five times in the corpus of laws. Finally, I apply the Porter stemmer, which

reduces related words (e.g., vaccine and vaccines) to a common stem.

The meaning of topics of can often be determined by displaying word clouds in which

the words are proportional to the estimated word-topic probability β̂k. The topics appear as

word clouds in Figure 4. Each stemmed word or bigram is proportional to the probability

of its use within the topic. Topic 1 contains the stems cream, cattle, test, and dairy. This

topic clearly concerns the inspection and testing of dairy for contaminants, a common prac-

tice that Anderson et al. (2025) show reduced deaths from diarrheal disease. Topic 2 also

relates to sanitation, including the stems toilet, supply, and pasteurization, which I refer to

as general sanitation. Other topics include venereal disease (with the stems venereal, infect,

and discharge); water and sewer (containing stems related to water systems such as sewer,

municipal, and system, as well as financing terms such as bond, tax, and property); and com-

municable disease (with the stems isolate, disinfect, and fever). Topic 6 concerns boards of

health, with stems such as appoint, power, and expense. Topic 7 addresses the labeling and

safety of food and drugs, with stems including manufacture, label, and package. The remain-

ing topics include laws related to the collection of vital statistics (with stems register and

record); housing and tenements (with stems tenement, building, and owner); and workplace

regulations (with stems hotel, barber, bakery, and employ).

Summary statistics for the cumulative number of laws by topic appear in Table 6. The

average state–month has approximately 8 laws in dairy/agriculture and dairy/sanitation; 4

in venereal disease; 9 in sewers/water; 7 in communicable disease; 19 in board of health; 6

in food and drug safety; 4 in vital statistics; 3 in housing; and 5 in health in the workplace.

The maximum number of laws in any state–topic pair is 141 (sewers/water). The multitude

of health laws, many addressing the same public-health issue, underscores why it is diffi-
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Figure 4: Word clouds of topics

Dairy and agriculture Dairy and sanitation Venereal disease

Sewers and water Communicable disease Boards of health

Food and drug safety Vital statistics Housing

Work place

Notes:
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Table 6: Summary statistics of cumulative laws by topic

Topic Mean S.D. Min Max N

Dairy and agriculture 8.1 8.3 0.0 46.9 6,850
Dairy and sanitation 8.2 8.8 0.0 64.4 6,850
Venereal disease 4.1 3.2 0.0 16.2 6,850
Sewers and water 8.7 13.9 0.0 140.6 6,850
Communicable disease 7.2 7.8 0.0 57.9 6,850
Boards of health 18.8 18.1 0.0 111.3 6,850
Food and drug safety 5.9 7.4 0.0 60.3 6,850
Vital statistics 4.4 3.7 0.0 26.1 6,850
Housing 2.5 3.3 0.0 20.3 6,850
Work place 5.2 4.1 0.0 18.5 6,850

Notes: Topics are from a LDA model with K = 10. I assigned the topic labels using the word-topic distri-
butions for each topic. The cumulative number of laws are the number of laws in a topic passed at time t in
state s since the beginning of sample (June, 1911). A laws are a mixture of topics and law that is, say, 30%
in topic k is coded as 0.3 laws for that topic.

cult to identify the effect of any single law type using a staggered difference-in-differences

specification with one intervention date per state.

Two-way fixed-effects estimates are reported in Table 7. Because there are ten topics

of interest, I use Romano–Wolf p-values to correct for multiple-hypothesis testing. This

step-down procedure adjusts the critical values rather than the standard errors, so I report

coefficients and p-values instead of standard errors. The results suggest that passage of a

food and drug safety law reduces mortality by 0.5%, which is statistically significant at the

10% level. A law related to the collection of vital statistics is associated with a decline in

mortality of about 1%, significant at the 1% level. The dairy/agriculture topic has a positive

and significant coefficient of 0.003, suggesting that such laws may be responses to milk-related

disease outbreaks or to possibly deregulation. No other topics reach conventional significance

thresholds after the multiple-testing correction.

6 Cause of death

The top causes of death in the United States changed rapidly during the twentieth century,

especially during the first decades. Between 1900 and 1950, the age-adjusted death rate for
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Table 7: Two-way fixed effects estimates of topics

Coef. p-value
(1) (2)

Dairy and agriculture 0.003 0.038
Dairy and sanitation 0.000 0.789
Venereal disease 0.006 0.138
Sewers and water -0.000 0.597
Communicable disease 0.003 0.123
Boards of health -0.001 0.501
Food and drug safety -0.005 0.070
Vital statistics -0.011 0.001
Housing -0.007 0.113
Work place 0.004 0.128

Notes: Statistical significance: ∗p < 0.1, ∗ ∗ p < 0.05, p ∗ ∗∗ < 0.01.

females fell by 86% between 1900 and 1950 for influenza and pneumonia, 92% for tuberculosis,

and 96% for diarrhea and enteritis (Hahn et al., 2018). Deaths from chronic conditions

increased, with the age-adjusted death from cancers and cardiovascular disease increasing

32% and 39%, respectively. Similar, and sometimes even starker changes occurred for males

(Jones et al., 2020).

Few states reported cause of death at the monthly level during this time period, thus, to

aggregate the data to the annual level. Annual-state level cause of death data come from

Miller (2006). To allow for every state-year cell to have all twelve month, I drop 1911, for

which the law data starts in June. All states that enter the registration during the sample

period do so in January of that year. Repeating the OLS and and IV estimation using the

annual data yields almost identical results (see Appendix Table A.2.

Table 8 displays the results for 20 separate causes of death. As every cause of death has

its own unique age-risk profile, the denominator for every cause is the total population, even

for infant mortality and under age-2 diarrhea. Measures deaths with the same denominator

implies that that if the coefficient of one cause is larger in magnitude than another, then that

law has larger effect on total mortality. Because there are twenty causes of death, I again use

the Romano-Wolf p-values corrected for multiple hypothesis testing. Most causes see a decline

in mortality during this period. This is not surprising as numerous laws were passed, and
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Table 8: The effects of public health laws on cause of death

Cause OLS IV
coef. p-value coef. p-value

Typhoid -0.001 0.028 -0.001 0.430
Malaria -0.002 0.479 -0.002 0.421
Smallpox -0.002 0.962 -0.003 0.939
Measles -0.002 0.803 -0.002 0.819
Scarlet fever -0.003 0.585 -0.003 0.430
Whooping cough -0.000 0.745 -0.000 0.939
Diphtheria -0.001 0.260 -0.001 0.430
Influenza -0.003 0.060 -0.003 0.037
Meningitis 0.002 0.962 0.002 0.939
Diabetes -0.001 0.154 -0.001 0.430
Circulatory -0.000 0.908 -0.000 0.430
Pneumonia -0.001 0.126 -0.001 0.069
Diarrhea (under 2) -0.003 0.028 -0.003 0.037
Brights nephritis -0.002 0.004 -0.002 0.002
Suicide -0.000 0.962 -0.000 0.939
Tuberculosis -0.001 0.060 -0.001 0.037
Cancer/tumor -0.000 0.126 -0.000 0.089
Childbirth -0.000 0.427 -0.000 0.571
Accidents/violence -0.000 0.199 -0.000 0.430
Infant mortality -0.001 0.011 -0.002 0.015

most causes would have had at least a subset of laws targeted towards that causes. However,

only a few causes see statistically significant declines following the passage of public health

laws. For the OLS model, typhoid fever, influenza, diarrhea under age 2, Brights nephritis,

tuberculosis, and infant mortality see statistically significant declines. The largest statistically

significant declines are for influenza and diarrhea under age 2, suggesting that a public health

law reduces the death rate by 0.3 percent. The IV are noisier, with influenza, pneumonia,

tuberculosis, Brights nephritis, and infant mortality showing the largest declines. Cancer is

marginally significant with a small point estimate.

Tables 9 and 10 report two-way fixed-effects estimates of the ten law topics across the

twenty causes of death. Because there are many comparisons, I adjust p-values using the

Romano–Wolf step-down algorithm, accounting for the 200 hypotheses tested. As expected

with so many tests, adjusted p-values are large and, in general, precision is insufficient to
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distinguish effects from noise. Only one coefficient remains statistically significant after the

correction: dairy/agriculture laws are associated with an increase in tuberculosis. This pat-

tern is consistent with laws regarding dairy and agriculture responding to outbreaks of bovine

tuberculosis, which was common during this era.
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7 Accounting for Declining Mortality

The preceding sections show that, on average, individual public-health laws generated eco-

nomically small reductions in mortality. This raises two questions: (1) when aggregated, do

numerous public-health laws produce a meaningful decline in mortality? and (2) how much

of the 1910s–1920s mortality decline can be accounted for by public-health legislation?

To answer these questions, I first estimate the observed decline in mortality over the

sample period and then construct a counterfactual mortality series in which no public-health

laws are enacted. I begin by restricting the sample to states who were in the registration area

from the start of the sample. This restriction forms a balanced panel, which I then aggregate

to a time series. I normalize time to the unit interval, t′ ∈ [0, 1], by setting t′ = t−1
T−1 , for

t ∈ {1, 2, . . . , T}.

I then estimate the following regression:

lnmt = αm + β1 1{t ∈ Wave1} + β2 1{t ∈ Wave2} + δ t′ + ϵt, (4)

where αm is a month-of-year fixed effect, 1{t ∈ Wavej} for j ∈ {1, 2} are binary variables

that absorb the unusual mortality patterns during the first and second influenza-pandemic

waves. The coefficient δ captures the linear trend in log mortality over the sample; because

t′ ∈ [0, 1], the parameter δ equals the total change log mortality over the period.

From this regression, I construct a counterfactual no-mortality-transition (NMT) series

that removes the time trend: lnmNMT
t = lnmt − δ̂t′. Using the baseline OLS estimates, I

construct a no-law (NL) counterfactual by setting lnmNL
t = lnmt + 0.0005cLawst. I then

re-estimate equation 4 with lnmNL
t as the dependent variable to obtain δ̂NL, which measures

how much mortality would have declined in the absence of any public-health laws.

The estimates imply that mortality declined by 18% over the sample period. Under

the no-law counterfactual, mortality declines by only 7%, implying that public-health laws

account for 61% of the decline
(
11
18 = 0.61

)
.

To visualize the cumulative effect of public-health laws, Figure 5 plots the observed mor-
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Figure 5: Counterfactual mortality

tality rate, the no-mortality-transition counterfactual, and the no-law counterfactual. To

make underlying trends more visible amid seasonality and the influenza-pandemic waves, I

also display a 24-month moving average. The no law counterfactual lies closer to the no

mortality transition series than to the observed mortality series.

8 Conclusion and Discussion

The results of this paper suggest that laws mattered: even if each statute had a trivial effect,

their accumulation produced a meaningful impact. A collection of laws can also be viewed

as a measure of the strength of public-health institutions, since it is difficult to imagine a

robust public-health institution without legal authority over many aspects of both private

and public life.
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The causes of death most affected are those with plausible mechanisms: for example,

waterborne causes such as childhood diarrhea, and airborne diseases exacerbated by over-

crowding in tenements, such as pneumonia and tuberculosis. Furthermore, public-health

laws regarding tenements, an area with little quantitative research in economic and demo-

graphic history, are strongly associated with reductions in mortality.

There are several caveats. Most notably, I lack measures of municipal public-health laws.

City-level laws are not entirely ignored, however, because many state-level public-health

statutes regulate what cities may do or compel cities to act in specific ways. In addition,

this study does not measure private actions. Private behavior is influenced by law but also

by incentives; as knowledge of germ theory spread, people may have altered their behavior,

even absent public-health laws, to avoid pathogens.
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Figure A.1: Examples of Public Health Laws

Table A.1: OLS results controlling for regional trends

(1) (2) (3)

Cumulative laws -0.000261∗∗ -0.000282∗∗ -0.000558∗∗∗

(0.000112) (0.000107) (0.0000917)

Notes: Statistical significance: ∗p < 0.1, ∗ ∗ p < 0.05, p ∗ ∗∗ < 0.01.

A Appendix
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Table A.2: OLS estimates of the effect of public health laws

(1) (2) (3) (4)

Panel A: OLS
Cumulative laws -0.000559∗∗∗ -0.000524∗∗∗ -0.000296∗∗∗ -0.000526∗∗

(0.0000913) (0.000107) (0.0000690) (0.000220)

Panel B: Second stage
Cumulative laws -0.000695∗∗∗ -0.000702∗∗∗ -0.000457∗∗∗ -0.000724∗∗∗

(0.000121) (0.000151) (0.000101) (0.000180)

Panel C: First stage
Cumulative sessions 0.393 0.796* 0.292 -0.080

(0.496) (0.421) (0.476) (0.570)
Cumulative session × salary 0.002*** 0.002*** 0.002*** 0.002***

(0.000) (0.000) (0.000) (0.000)
F-stat of IVs 357.72 219.91 453.30 74.17
N 557 374 512 557

Balanced N Y N N
Lagged mortality N N Y N
Weighted Y Y Y N

Notes: Statistical significance: ∗p < 0.1, ∗ ∗ p < 0.05, p ∗ ∗∗ < 0.01.
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Figure A.2: LP-DiD estimates dropping laws with delayed effects
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